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Abstract—Average envelope shapes (mean square amplitude time histories) of small earthquakes

represent a convenient basis for the construction of semi-empirical stochastic ‘‘Green’s functions,’’ needed

for prediction of future strong ground motion. At the same time, they provide crucial evidence for

verification of the theories of scattering of high-frequency seismic waves in the lithosphere. To determine

such shapes in the Kamchatka region we use the records of near (R = 50–200 km) shallow earthquakes

located around the broadband station PET. On these records, we select the S-wave group and determine its

root-mean-square duration Trms, separately for each of the five octave frequency bands. We determine the
empirical Trms vs. distance dependence and find it to be very close to a linear one. At the reference distance
R = 100 km, average Trms decreases from 5.4 sec for the 0.75 Hz band to 3.9 sec for the 12 Hz band. To
analyze average envelopes, we assume that the functional form of the envelope shape function is

independent of distance, and stretch each of the observed envelopes along the time axis so as to reduce it to

a fixed distance. Through averaging of these envelopes we obtain characteristic envelope shape functions.

We qualitatively analyze these shapes and find that around the peak they are close to the shapes expected

for a medium with power-law inhomogeneity spectrum, with the spectral exponent 3.5–4. From onset-to-

peak delay times we derive the values of transport mean free path and of scattering Q for a set of distances.
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Introduction

To reliably simulate destructive strong ground motion from a finite earthquake

fault one needs the response of the medium to an elementary source. For relatively

low frequencies, this problem can now be effectively solved with many modern

techniques of calculation of theoretical seismograms. However, at high frequencies

and reasonable distances (say, above 2 Hz at 30-km distance or farther), the

application of these deterministic techniques meets with difficulties; one of them is

that they require very detailed and often unavailable information about the structure

of earth medium.
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Another possibility is to use observed small earthquake records as ‘‘empirical

Green’s functions’’ (EGF). This approach, though attractive, is far from being

universal. Usually its applicability is demonstrated using aftershocks, whereas it may

well be impossible to find records of small earthquakes with hypocenters and fault

plane solutions sufficiently close to those of a target potential earthquake fault.

Another complication is the significant variability of small earthquake records that

creates a problem of choosing the ‘‘right’’ EGF. At last, EGF are highly site-

dependent; this is an advantage when a particular site needs assessment, however

inconvenient when a more general description of potential earthquake effects is

sought for (say, for a long lifeline or a broad residential area).

As an alternative to these deterministic approaches, one may treat the high-

frequency (HF) part of the record as a random function. A standard stochastic

description is to combine a ‘‘modulating’’ envelope function (positive, non-stationary

but slow-varying) and stationary noise-like ‘‘carrier’’ high-frequency signal. The

envelope function of maximum amplitudes on the record (that is, S-wave group) is

usually pulse-like, and can be considered as the instant mean square amplitude of the

signal. The noise-like ‘‘carrier’’ is a random signal, and may be taken to have unit

variance. It is this stochastic approach that we deal with in the present study.

Recently a combined approach was put into practice by KAMAE et al. (1998).

They simulated strong ground motion using a hybrid Green’s function technique: the

long-period motions from a small event were deterministically calculated using the

3-D finite-difference method, whereas the high-frequency motions were stochastically

simulated using BOORE’s (1983) method.

One can argue (HADDON, 2000) that the high-frequency seismic record consists

of particular arrivals that may be effectively predicted theoretically on the basis of

a layered or more complicated model, and thus the stochastic approach, at least

with respect to propagation effects, is redundant and misleading. This may be

partly true in particular cases, in the first place in continental areas where a short

Lg phase is often dominating in the S-wave group. The usefulness of the stochastic
approach, as usual, can be proved only by its efficiency. At relatively low

frequencies, and in locations with well-known structure, especially when the

deviations from the layered earth model are slight, the deterministic approach is

adequate. At higher frequencies, with complex structures, stochastic approach often

becomes the only workable one. For example, to predict effects of an M ¼ 8 event
in a geologically complex area (such as island arc or mountain system), at

epicentral distances in excess of 25 km and at frequencies above 1–3 Hz, the

stochastic approach has no real alternatives.

The description of earthquake signals through envelope and stationary carrier is

well known among seismologists and earthquake engineers, most often for the case

of moderate-to-large earthquakes. The most important feature of the envelope

function is its duration defined in some convenient way. TRIFUNAC and BRADY

(1975) found that both source process and propagation in the medium contribute
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significantly to the duration of an accelerogram (which represents a most common

HF signal, and is mostly caused by the S-wave group). The path-related contribution

to duration increases with epicentral distance; moreover, it is approximately

proportional to it. The evident explanation for such a behavior is the common

dispersion of the surface-wave train: it must cause just this picture. This explanation

is probably too simplistic however because the well-known surface wave signature is

a deterministic dispersive wave-train with good spatial coherence, whereas the

observed S-wave group is noise-like and usually has a correlation distance of the

order of the wavelength. The models of common waveguides with scatterers (MALIN,

1980; WANG and HERRMANN, 1988) or of random waveguides (LEARY et al., 1993)

seem to be considerably more relevant, but they are not sufficiently advanced at

present to be directly compared to data.

On the other hand, one may treat the S-wave group as a body-wave phenomenon.

Depending on the character of real data, one may prefer a deterministic description

(through multiple rays) or a stochastic one, which seems to be more appropriate for

our observations. Initially we attempt to describe observations in a phenomenolog-

ical fashion, through determining average envelope shapes and then through

estimating their dependence on frequency and distance. Then we try to explain the

results in frames of a particular model, namely that of random forward scattering.

This particular model, with some additional assumptions, predicts more or less

realistic envelope shape (WILLIAMSON, 1972; GUSEV and ABUBAKIROV, 1996). In

frames of this model, the distance dependence of the duration of the envelope may be

employed for determination of the scattering parameters of the lithosphere (GUSEV

and LEMZIKOV, 1983, 1985; SATO, 1989; GUSEV and ABUBAKIROV, 1999a,b). There is

a problem however: the duration vs. distance behavior predicted by Williamson’s

theory often does not match the observations well. Indeed, Williamson’s theory

predicts that duration is proportional to distance squared, in clear contradiction, e.g.,

to Trifunac and Brady’s result. In one case this contradiction was successfully

resolved. For nearly-vertically propagating rays, an approximately linear increase of

duration with distance can be consistently explained by the strong vertical non-

uniformity of the scattering coefficient (GUSEV and ABUBAKIROV, 1999a,b). However,

for wave propagation from crustal sources at distances exceeding 50 km, this

explanation cannot be directly applied.

We are unaware of any theory that might consistently explain the linear increase

of the duration of the HF S-wave group with distance. (This duration should not be

confused with the duration of the first pulse, or half-wave.) On the other hand, the

idea that this increase is indeed so close to linear was never verified accurately: strong

motion data cannot resolve the accurate mode of the duration vs. distance

relationship. Thus, it is interesting to establish this relationship with a certain

accuracy and in a systematic manner. The results of such a study may serve as solid

input information for semi-empirical strong-motion simulations; simultaneously they

would represent a well-defined piece of evidence that may be used for validation of
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any future advanced theory of random wave propagation in the lithosphere. For

similar reasons, accurate determination of envelope shapes also deserves attention.

For the problem of determination of the average envelope shape, a significant

complication is the need to estimate the empirical function of two variables: time and

distance. To circumvent this problem we will assume that the envelope shape is

functionally the same over a wide distance range. That is, the mean observed

envelope can be written approximately as F ðt=t�Þ where t� is a distance-dependent
constant, and F ð Þ is a universal function, one for all distances. Any reader
acquainted with short-period seismograms of near earthquakes knows that it is

(almost) impossible to estimate the epicentral distance from the sole appearance of a

record with an unknown ‘‘paper speed,’’ and this impossibility just means that the

universal envelope function is a sound idea. Incidentally, many theoretical envelope

shape functions are also distance-independent. In both cases, the envelopes obtained

at different distances will match after appropriate squeezing or stretching of the time

axis.

The data analysis was performed in the following order. First we select three-

component digital records, separate S-wave groups and find the duration parameter

for each component. We use the systematic definition of duration through the second

temporal moment of squared amplitude. To account for frequency dependence of

durations and envelopes, this is done separately for each of the six filtered traces

covering the 0.5–16 Hz range, five with one-octave bandwidth, and one wideband.

We analyze the duration vs. distance dependence and find that it is well described by

a simple linear proportionality. Then we stretch the time axis of each envelope so as

to reduce it to a fixed distance, and we average all envelopes for a given frequency

band, to obtain stable and reliable empirical averages. Lastly, we compare these

envelopes with theoretical shapes and determine apparent parameters of scattering

including estimation of scattering attenuation.

Method

Rms Duration and Other Definitions of Duration

A number of definitions of duration of high-frequency earthquake signal exist

among seismologists and earthquake engineers. One popular idea (APTIKAEV, 1975;

KAWASHIMA et al., 1985) is to depart from the peak value and to treat as significant

the segment of the time axis in which the amplitudes are in excess of some fraction

(say, 50%) of the peak value. The duration parameter T0:5 is then defined as the
duration of the significant part of the signal. Another approach is to integrate the

power (squared amplitude) of the record, take the moments when this integral equals

to, say 5% and 95% of its final value, and calculate duration (T90) as the interval
between these marks, containing 90% of total energy (TRIFUNAC and BRADY, 1975).
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GUSEV (1983) proposed the use of rms duration Trms defined through the normalized
second central moment of squared amplitude A2ðtÞ:

T 2rms ¼ e2=e0 � ðe1=e0Þ2; ð1Þ

where ej are initial power moments over time:

ej ¼
Z1

0

tjA2ðtÞ dt ðj ¼ 0; 1; 2Þ: ð2Þ

If one treats the squared amplitude as probability density, then T90 and T 2rms
correspond to the 5%–95% inter-quantile range and variance, respectively.

The justification for one more definition is its very attractive theoretical

properties. Earthquake signals can be often treated, at least approximately, as the

convolution of source-related and path-related components. This is of course also

true for their extracted HF part. For the high-frequency part of signals of stronger

earthquakes recorded at longer distances in heterogeneous structures (say, f > 1 Hz

signal components of M > 6 events recorded at R > 30 km in an island arc), both the

source and the path contributions have a stochastic, noise-like character. It is not

widely known that in this case the envelope (mean square amplitude) of the convolved

signal approximately coincides with the convolution of envelopes of components.

(This fact is well known in radiophysics and laser optics, see e.g., ISHIMARU (1978);

the entire field of lidar data analysis is based upon it). In seismology it was

introduced by RAUTIAN (1976) and KOPNICHEV and SHPILKER (1978). As the second

central moment of convolution is the sum of the second central moments of

components (in probabilistic terms, the variance of sum is the sum of variances of

components), then (GUSEV, 1983)

T 2rms; total ¼ T 2rms; source þ T 2rms; path; ð3Þ

where Trms; source is the rms duration of squared HF source wavelet for a ray to a given
receiver, Trms; path is the rms duration of squared average Green’s function of the path,
and Trms; total is the rms duration of the recorded signal. Therefore, by using rms
duration definition, the problem regarding how to combine source and path effects

on duration acquires a simple, intuitively transparent and theoretically well-

grounded solution. In particular, equation (3) provides a ready structure for a

relevant empirical formula. A simple way to determine Trms; path empirically is to
approximate it by Trms; total of a small earthquake; this is justified by the fact that the
source time function of a small earthquake is sufficiently near the d-function.

Determining rms Duration in Practice

An important issue in the practical determination of Trms on the basis of eqs. (1)
and (2) is the choice of the time window for the integration (or, for the S-wave
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group). Its beginning creates no problem, but for the selection of its end there is no

natural rule. Furthermore such a rule is needed because coda decays slowly thus

making Trms estimates somewhat dependent on the choice of the window. The results
of TRIFUNAC and BRADY (1975) suggest that the length of the window can be varied

in proportion to distance. This idea also agrees with our assumption of a standard

envelope shape. Therefore, we set the length of the window proportional to the S-P

interval, with the particular value of coefficient (2.0) that was further selected on the

empirical basis.

Data processing is carried out in the following manner. First, we filter each record

by means of five 3rd-order one-octave (0.5–1, 1–2, 2–4, 4–8, and 8–16 Hz)

Butterworth filters in direct and inverse time. Also a wide band (0.5–16 Hz) filter

was used. P and S onsets are picked from displacement records. When an S-onset

pick was doubtful, the calculated S-onset time was used instead. Then the S-wave

window is defined, with the length proportional to the S-P interval. Over this

window, integration (2) of squared amplitude was performed. To stabilize the result,

we combine the signal xðtÞ with its Hilbert transform HfxðtÞg and use the square of
the modulus of the analytical signal as the squared amplitude:

A2ðtÞ ¼ x2ðtÞ þ H 2 xðtÞf g: ð4Þ

This procedure was further modified to eliminate the bias (sometimes significant)

related to microseismic noise. Assuming signal and noise to be uncorrelated, one can

write down the corrected squared signal amplitude as:

A2s ðtÞ ¼ A2sþnðtÞ � A2n; ð5Þ

where AsþnðtÞ is the ‘‘raw’’ recorded (filtered) signal, and A2n is the mean square
amplitude of the noise. Noise is assumed stationary, thus its squared amplitude is

constant. In practice, A2n is estimated as the average squared noise from a record

segment before the P onset. This procedure was performed for each frequency band.

Duration vs. Distance Relationship

Now we pass to the procedures for determination of the Trms vs. distance
dependence. After the work of TRIFUNAC and BRADY (1975) and other studies in this

line one can expect that the Trms vs. epicentral distance dependence for shallow
earthquakes will be close to a linear one. Contrastingly, from WILLIAMSON (1972)

and SATO (1989) one can expect the duration to increase as the 1.5–2 power of

distance. For this reason we apply the following formula to our data analysis:

Trms ¼ Tref R=Rrefð Þn; ð6Þ

where Rref is the fixed reference distance, taken further as 100 km, and Tref ¼ T100 and
n are the unknowns to be fit to the data.
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Determination of Envelope Shapes

With the n value at hand, we can pass to the estimation of the envelope shape.
This can easily be done for any fixed n; but using the fact, to be settled further, that

the optimal n value is very near 1.0, we confine ourselves to the case n ¼ 1. The
assumption of the standard shape function means that

A2ðtÞ ¼ cF t=tcð Þ; ð7Þ

where tc ¼ tcðRÞ is the characteristic duration. With tc proportional to R, this yields
A2ðtÞ ¼ cF ðt=tpÞ where tp may represent, e.g., the S-wave travel time for a particular
record. To estimate the F ðsÞðs ¼ t=tpÞ function from the data, we need to compress
or expand the time axis. Technically, with the data in the form of a sequence of

samples with a constant time step, it is sufficient to change this step. Then, for

convenience in further data analysis, thus modified data are resampled (by

interpolation) with a common time step. The envelope of each modified record is

smoothed; and at last we decimate the result. This allows us to limit the number of

points where the F ðsÞ is determined, without sacrificing significant details. The
resulting sequence is then normalized to its own ‘‘energy’’ e0.
To find the characteristic shape, all normalized envelopes were averaged over all

available traces; and the result was smoothed again.

Initial Data and the Study of RMS Durations

Data

Initial data are the records of the broadband digital station PET, installed at

Petropavlovsk-Kamchatsky, Kamchatka, Russia, in September 1993. The station is

located on a hard rock mass and its possible site effect on the duration is negligible.

To study the rms duration we used the records of the short-period (SP) channel with

a sampling frequency of 80 Hz, obtained in 1993–1994. We selected events with

depths 0–40 km and distances extending to 200 km. In order to obtain representative

results, we wanted to evenly cover the analyzed distance range. We used all available

records for the distance range 0–80 km. Some data for the 80–200 km range were

rejected in a random manner. As a result we obtained about 15 records per every

20-km distance interval. To guarantee sufficiently short source duration, events with

magnitudes exceeding 4.5 were excluded. As is known for the region in question, the

duration of the S-wave group significantly depends on the source depth (ABUBAKI-

ROV and GUSEV, 1990; GUSEV and ABUBAKIROV, 1999b). This governed the selection

of only shallow events (H < 40 km). Most source depth values are between 20 and

40 km (with some tolerance), whereas the Moho depth here is between 25 and 35 km.

Thus, most events cannot be considered as definitely crustal or definitely subcrustal.
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The final data set includes three-component records of 82 earthquakes; their

epicenters are mapped on Figure 1. The appearance of the S-wave group within the

seismic record was random-like. No systematic arrivals suggestive of Lg or Moho
reflection are known for station PET as well as for other stations on the eastern coast

of Kamchatka. Thus, the interpretation of these data in a stochastic manner

evidently was a reasonable idea.

Estimating Trms

The selected data set was processed according to the procedure described in the

previous section. Firstly, velocity records of SHZ/SHN/SHE channels (80 sps) were

converted to acceleration (in view of a possible engineering application) and then

bandpass filtered. An example of a filtered component is shown in Figure 2. Then we

had to set the integration window. To do this in a systematic manner, we had to

choose the value of the coefficient K in the equation:

Dt ¼ K tS � tPð Þ; ð8Þ

Figure 1

Epicenters of the earthquakes recorded by the IRIS station Petropavlovsk and used in this paper.

1724 A. G. Petukhin and A. A. Gusev Pure appl. geophys.,



where Dt is again the width of the time window for integration in (2) and tS � tP is
the S-P interval. In Figure 3 we see how the rms duration (averaged over a

particular distance range) depends on the choice of K. We show the result for the

wide-band channel; for the other bands the results are similar. One can see that in

each distance range, the average rms duration increases with increase of K, as

could be expected, but that this increase nearly saturates at K ¼ 2. On this
basis, we selected K ¼ 2 for the further processing. Then the Trms values were
calculated.

Analysis of the Trms vs. Distance Trend

In Figure 4 we see the observed Trms vs. distance trends for all frequency bands in
the log-log scale. We see quite stable trends, visually near linear, in agreement with

our assumed equation (7). To determine Trms and n, we now perform linear regression
according to the equation:

y ¼ aþ bxþ � ð9Þ

where y ¼ logðTrmsÞ; x ¼ logðR=100Þ; � is a random error, and unknowns a and b are
logðT100Þ and n, respectively. The results of the fit by least squares are shown in
Table 1.

Most estimated n values are insignificantly different from 1.0. Therefore, the usual

assumption n ¼ 1 (TRIFUNAC and BRADY, 1975; RAUTIAN and NIKIFOROVA, 1980)
can be applied to Kamchatka data with certainty. The T100 value (Trms for

Figure 2

Example of a small earthquake record (acceleration) filtered into 5 one-octave frequency bands (0.5–1, 1–2,

2–4, 4–8 and 8–16 Hz) and into the wide (0.5–16 Hz) band. Vertical lines show P and S arrivals and also
the end of the time window which was used to cut out the direct waves for the case of K ¼ 2.
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R ¼ 100 km) is also listed in Table 1. Note that the scatter of individual Trms values is
moderate: rð�Þ is about 0.1, meaning that at a given distance, typical Trms variations
for a particular component are between 80% and 125% of the average. Individual

Trms estimates for various components are positively correlated, and the degree of
correlation increases with frequency. We cite here the coefficient of correlation

between a horizontal component and the vertical component (average over EW-Z

and NS-Z pair sequences); it equals to 0.11, 0.47, 0.76, 0.80, 0.74 and 0.83 for Df ¼
0.5–1, 1–2, 2–4, 4–8, 8–16 and 0.5–16 Hz respectively. In Figure 5 one can see the

frequency dependence of T100. The set of estimated T100 and n values represents the
first main result of the present study.

It is interesting to compare the T100 estimates between various frequency bands
and also between horizontal and vertical components (see Table 1 and Fig. 5).

With increasing frequency, rms envelope durations decrease at all components. On

average, T100 decreases from 5.5 sec at the 0.5–1 Hz band to 4.0 sec at the

8–16 Hz band. The increase of duration at lower frequencies agrees with the

appearance of the wideband S waveforms: their later parts have (visually)

considerably lower frequencies as compared to the part just after the S onset.

The duration of the S-wave group on the vertical component is 5–9% larger

than on the horizontal one. This effect is more pronounced in the higher-

frequency bands.
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The relationship between Trms and the length of the direct S-waves time window for all distance range bins.
The vertical dashed line indicates the window length used to estimate average parameters in this paper.
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Determination and Analysis of Average Envelopes

The second part of the work deals with the determination of average empirical

envelopes of S-wave groups of small earthquakes on the horizontal component. With

this aim we processed the same records as used for the Trms study, using the procedure
described above. The only deviation from the ideal procedure is related to limited

data quality. When the equation (5) was applied, one or more segments of a

particular envelope could sometimes become negative (local estimate of the

‘‘signal + noise’’ level is below average noise). This situation indicates that the

local estimate of signal power is unreliable, and hardly will become reliable again

later along the record. For this reason, only one continuous segment of the

corresponding record (that contains the maximum amplitude) was kept for further

processing. Some traces of lower-frequency bands were discarded completely. Thus
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Distance dependence of Trms for the case of the direct S-waves window defined by the value K ¼ 2,
the average estimate over horizontal components, frequency bands: Df ¼ 0.5–1, 1–2, 2–4, 4–8,

8–16 and 0.5–16 Hz.
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the data volume and so the accuracy of our envelope estimates deteriorate at the ends

of the time segment and also at lower-frequency bands.

After passing this check, the smoothed data were modified by the above-

mentioned procedure for expansion/contraction of the time axis. For this procedure,

the reference distance of 200 km was used, so that actually all envelopes were only

expanded. After expanding and normalization, the individual envelopes were

Table 1

Parameters of the regression equation log Trms ¼ log T100 þ n logðR=100Þ þ e. Linear regression (equation
(9)) is performed for observed Trms data calculated for the case K ¼ 2. e is random error. In calculations for

‘‘horizontal’’ component, the average Trms over EW and NS components was used.

Df , Hz T100 rðlog T100Þ n rðnÞ rðeÞ

Horizontal component

0.5–1 5.37 0.18 1.0 0.09 0.12

1–2 4.96 0.12 0.97 0.06 0.08

2–4 4.27 0.14 1.01 0.07 0.10

4–8 3.72 0.14 0.94 0.07 0.09

8–16 3.76 0.21 0.92 0.10 0.13

0.5–16 3.80 0.18 0.94 0.09 0.12

Vertical component

0.5–1 5.62 0.17 1.00 0.08 0.11

1–2 5.01 0.10 0.99 0.05 0.07

2–4 4.37 0.12 0.95 0.06 0.08

4–8 4.07 0.13 0.90 0.06 0.08

8–16 4.27 0.20 0.92 0.10 0.13

0.5–16 4.07 0.22 0.91 0.11 0.14

Figure 5

Frequency dependence of the T100 parameter for horizontal (average over NS and EW) and vertical
components (see also Table 1).
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averaged and smoothed again to produce the estimates of mean envelope shapes.

Figure 6 illustrates the applied procedure for the frequency band 2–4 Hz. The

resulting envelopes can be seen on Figure 8 in the linear scale and on Figure 7 in the

log-log scale. Both error bounds for average envelopes and the scatter of individual

envelopes are represented graphically on Figure 7. Accuracy varies for the reasons

discussed above; in the worst case we have a point based on only 7 individual data,

against 164 for the best points.

These envelopes represent the second main result of the work; they are ready for

application in strong-motion modeling by stochastic approach.

The shape of average envelopes is generally consistent with the shape of an

envelope scattered in the random medium (WILLIAMSON, 1972): they have the typical

steep leading edge and gradually decreasing trailing edge. One remarkable feature is

the second hump at the delay time 15–30 sec that is seen for the 0.5–1 Hz band. A

similar but less pronounced tendency is also clearly seen for 1–2 Hz band (compare

Figure 7 and Figure 8) and also may be noted for 2–4 Hz band. This feature can be

tentatively associated with the arrival of a ‘‘slow’’ train of short-period surface waves

with group velocities between 3.5 and 2.8 km/s. The average delays tm for maxima of
S-wave envelopes with respect to S-wave onsets (onset-to-peak delays) are given in

Table 2. Between 0.5 and 8 Hz they clearly increase with frequency. This result is

seemingly in contradiction with the already ascertained fact that Trms values decrease
with frequency. This difference is caused by the presence of the mentioned ‘‘second

hump’’ feature in the tail parts of lower-frequency envelopes. Although the

Figure 6

Example of calculation of average envelope, Df ¼ 2–4 Hz. Circles: the ‘‘raw’’ envelope of an example
individual record reduced to the distance R ¼ 200 km; dashed line: envelope, averaged over individual
envelopes reduced to R ¼ 200 km and smoothed with constant window DT ¼ 2 sec; solid line: the final

average envelope for Df ¼ 2–4 Hz.
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amplitude of the ‘‘hump’’ is not large, its contribution to the value of Trms is greatly
enhanced by the t2 weighting in the integration (2).

Estimating Apparent Mean-free Path and Scattering Attenuation

We can now compare the observed average envelope shapes (we shall also refer to

them as ‘‘pulse shapes’’) with theoretical ones. One relevant shape function was

calculated by WILLIAMSON (1972, 1975) for the case of forward scattering of energy

Figure 7

Averaged smoothed envelopes of filtered records in log-log scale. Dashed lines represent the 
1r corridor
for the estimated average envelope; error bars show the 
1r scatter of individual data points. Envelopes

have normalized amplitudes and, for clarity, are shifted in a vertical direction by two decades.
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radiated by a point source in a scattering medium with Gaussian autocorrelation

function (ACF), see detailed discussion in GUSEV and ABUBAKIROV (1999a,b). Let us

introduce the following denotations: l ¼ 1=g is ‘‘effective’’ (or ‘‘transport’’) mean-
free path, tMFP ¼ l=vS ¼ Qs=2pf is transport mean-free time, tQ ¼ Qi=2pf and vS is
S-wave velocity. Here Qs and Qi denote scattering Q and intrinsic Q, respectively;
albedo of the medium is B ¼ t�1MFP=ðt�1Q þ t�1MFPÞ ¼ Q�1

s =ðQ�1
i þ Q�1

s Þ. Now William-
son’s result can be written down with a slight modification as

W ðs; qÞ ¼ 2p
2

q2
X1
n¼1

ð�1Þn�1n2 exp �p2n2s
q2

� �
; ð10Þ

Figure 8

Average smoothed envelopes of the medium pulse response in six frequency bands, reduced to R ¼ 200 km
(linear scale).

Table 2

Estimates of l and Qs for a set of distances and frequency bands

Freq. Band,

Hz

tm (200 km),
sec

l at R ¼ QS at R ¼

200 km 100 km 50 km 200 km 100 km 50 km

0.5–1 2.3 287 144 72 386 193 97

1–2 2.7 244 122 61 657 328 164

2–4 3.4 193 96 48 1038 519 270

4–8 3.6 182 91 45 1960 980 490

8–16 3.3 199 100 50 4292 2146 1073

0.5–16 3.1 212 106 103 2476 1238 619
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where s and q are dimensionless time and distance: s ¼ t=tMFP, and q ¼ R=l,
respectively, and t or s are counted from the arrival time. (The original Williamson
formula is based, instead of l, on the value of ‘‘the mean-square angular dispersion of

the ray per unit distance’’ parameter D ¼ 2=l).
As was shown, e.g., by GUSEV and ABUBAKIROV (1996), the common assumption

of Gaussian ACF is hardly realistic for HF seismic waves in the lithosphere. Random

media models with power-law spectrum of inhomogeneities can be employed with

considerably more success (GUSEV and LEMZIKOV, 1983, 1985; WU and AKI, 1985).

Among such media (of so named ‘‘self-affine’’ class), an important reference case is

that of self-similar random inhomogeneity. In this case, in the 3-D spectrum of

fluctuations of velocity,

P ðkÞ / k�a; ð11Þ

the exponent a equals 3. Media with a > 3 seem to be reasonable models for

lithosphere, and a ¼ 3:5–4 is a good starting estimate (GUSEV and ABUBAKIROV,
1996). As noted by WU and AKI (1985), one can relate the value of a to the value of
the exponent (denote it c0) in the power-law that relates true backscattering turbidity
to frequency: c0 ¼ a � 4. Their result is however decidedly more general, and
applicable, e.g., for inverse transport mean-free path 1=l. Thus, if

l / f�c ð12Þ

then one can estimate a as

a ¼ 4� c� ð13Þ

GUSEV and ABUBAKIROV (1996) numerically modeled pulse shapes for a set of a
values, but their shapes are too rough for direct comparison to data. LAMBERT and

RICKETT (1999) calculated theoretical pulse shapes for a self-affine medium with

a ¼ 11=3 ¼ 32=3 (famous Kolmogorov spectrum for turbulence); and this value fits in
the mentioned range 3.5–4. Thus we used their shapes as a good reference. LAMBERT

and RICKETT (1999) also believe that pulse shapes of Williamson’s case are identical

to those of the case with a ¼ 4. Envelopes of Lambert and Rickett do not account for
intrinsic loss; to clarify its importance we add the relevant attenuation factor in our

calculations.

To carry out the comparison of observed and theoretical shapes we must

normalize them in an appropriate way. With this aim, we rescale time and

amplitude axes of all envelopes (theoretical as well as observed) so that all pulses

have unit amplitude and unit onset-to-peak delay. Figure 9 exhibits the result of

such a comparison for five one-octave bands. To illustrate the effect of intrinsic

loss we plot the ‘‘Kolmogorov’’ case in two versions: with B ¼ 1 (no intrinsic loss,
Qi ¼ 1 ) and B ¼ 0:5 (Qi ¼ Qs). (In the calculation of attenuation, we use the
values of onset-to-peak delay and Qs from Table 2, for the wide-band case.) One

can see that the effect of a considerable intrinsic loss is only slight, and can be
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safely ignored for the exploratory study of the present kind. One can note that in

the vicinity of the peak, the observed shapes seem to be wider than predicted by

the Williamson’s formula, whereas the ‘‘Kolmogorov’’ shape is quite acceptable.

The leading edge of the observed pulse is poorly resolved, and no meaningful

comparison can be made. (The case of 0.5–1 Hz band is the worst. In this case

the duration of a single period of a signal is about 1.4 s, comparable to the value

of the peak delay; thus the estimation of the envelope shape cannot be accurate).

The picture at the trailing edge (that corresponds to the ‘‘early coda’’ part of a

real record) is remarkable. Williamson’s shape with its exponentially decaying tail

certainly can be rejected as unrealistic. The ‘‘Kolmogorov’’ shape fares well for

the 8–16 Hz band and marginally well for the 4–8 Hz bands. Numerical results of

GUSEV and ABUBAKIROV (1996) indicate that the shape of the tail is rather

susceptible to the value of a. Thus one can believe that the true value of a is near
the ‘‘Kolmogorov’’ value of 32=3. At lower frequencies, the agreement

between theoretical and observed shapes deteriorates, and becomes worst for

the 0.5–1 Hz band where the already mentioned second hump exists in early coda

Figure 9

Average Kamchatkan envelope shape for five one-octave bands (gray line), compared to the following

theoretical envelope shapes: after WILLIAMSON (1975) for the medium with Gaussian ACF (thin line); after

LAMBERT and RICKETT (1999), for the medium with ‘‘Kolmogorov’’ inhomogeneity spectrum (thick lines),

in normalized scale. The two versions of ‘‘Kolmogorov’’ envelopes correspond to B ¼ 1:0 (original shape)
and to B ¼ 0:5 (modified by the present authors). In the vicinity of the peak, the observed shapes are wider
than predicted by the Williamson’s formula whereas the ‘‘Kolmogorov’’ shape is quite acceptable.
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(not seen in Fig. 9). The source of additional energy in the early coda is not

settled.

Despite limited agreement between observed and theoretical shapes, we

attempted to estimate transport mean-free path values using the values of the

onset-to-peak delay tm and ignoring the secondary energy arriving at larger delays.
To attain this we follow the approach of ABUBAKIROV and GUSEV (1990), modified

by GUSEV and ABUBAKIROV (1999a,b). Considering signals within a limited

frequency band around a certain f (and omitting the dependence on f in most

formulas), we assume for the onset-to-peak delay in dimensionless time sm

sm ¼ Cmq2; ð14Þ

where Cm is a model-dependent constant. For the Gaussian ACF/Williamson’s case,
one can assume Cm ¼ 0:091, and use (14) in the entire B range 0.3–1 as a reasonable
approximation. This gives an estimate

l ¼ CmR2=ðvStmÞ: ð15Þ

This quadratic distance dependence holds for multiple low-angle scattering models

with finite mean square angle of a single scattering, see GUSEV and ABUBAKIROV

(1999a). (In fact, the ‘‘low-angle’’ assumption may be violated in seismological

applications, nevertheless we believe that using (15) is a good starting point.) The ‘‘

finite mean-square angle of a single scattering’’ property holds for a considerably

wide class of scallering models, and in particular includes self-affine media with

a < 3:0 (but not with a  3:0). For self-affine media, Figure 8 of GUSEV and
ABUBAKIROV (1996) permits one to make rough estimates of Cm values, valid for q
values around 1.0. In particular, Cm � 0:0315 for a ¼ 3:0;Cm � 0:045 for a ¼ 3:5,
and Cm � 0:063 for a ¼ 4:0. (These estimates were obtained numerically and do not
suffer from the theoretical problem of the ‘‘low-angle’’ approximation mentioned

above). Now to apply (15) in the data analysis we must determine Cm, and to
accomplish this we must find a from our observations.
To estimate the exponent a we can use the frequency dependence of l, assuming it

to follow the power law (12). To find the actual value of c for the Kamchatka crust
we note that at a fixed distance and at a certain definite value of Cm (that depends
only on unknown a) lðf Þ / tmðf Þ�1 (see (15)). We then fit the tm values of Table 2 by
a power law, and obtain c ¼ 0:15
 0:05. Now with (13) we get a ¼ 3:85. This
estimate, retrieved from the frequency dependence of onset-to-peak delay, does not

contradict the previous analysis of envelope shapes (that approximately agree with

the shape calculated for a ¼ 3:667). For a ¼ 3:85, interpolation gives Cm � 0:057,
and we use this value in further data analysis.

Now employing (15), assuming vS ¼ 3:5 km/c and again using observed average
delay values tm (Table 2), we obtain the set of estimates of transport mean-free path
given in Table 2 for the following distance values: 200 km (as in Fig. 8) and also 100

and 50 km, see also Figure 10.
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Generally speaking, l is a material property, so why do we have such different

estimates of l for different distance values (50, 100 and 200 km) in Table 2? This point

needs clarification. First, how did these differences appear from the data? The reason is

that empirically the pulse duration grows linearly with distance, whereas the applied

theory assumes quadratic dependence. Thus, the estimate of l becomes dependent on

distance, and increasing, incidentally, also in linear fashion (instead of being constant,

as is appropriate for a regular parameter of themedium). Thismeans that our estimates

do not describe the scattering properties of a uniformly scattering medium; rather they

are apparent values that reflect the level of scattering along different rays in the non-

uniformly scattering medium; more on this point below. The values of dimensionless

distance q ¼ R=l are in the range q ¼ 0:9–1:4 for the whole distance range analyzed (q
being independent of distance and slightly depending on frequency). From the

estimates of l one can pass to the values of Qs ¼ 2pfl=vS also given in Table 2.

Stochastic Simulation of Strong Ground Motion

As we mentioned, the average envelopes can be used for stochastic simulation of

strong ground motion records. Broadening of envelopes with distance due to random

scattering is especially important for simulating high-frequency seismic records of

large, relatively distant, interplate, subduction zone earthquakes. To demonstrate the

general methodology of stochastic simulation of strong motions using our average

bandpass envelopes we developed a simplified algorithm described briefly in Appendix

A. To show it in action we simulated ground motion from two moderate earth-

quakes recorded by the low-gain (LG) channel of the IRIS station Petropavlovsk:

Figure 10

Frequency dependence of the mean free path estimates l (see also Table 2).
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(1) November 13, 1993 with MW ¼ 7:0, R ¼ 135 km, seismic intensity I ¼ 5 in
Petropavlovsk-Kamchatsky, and (2)May 7, 1994,MS=5.5,R ¼ 107 km.OnFigure 11
we compare the observed and simulated accelerograms. One can see that both

the envelope shape and the frequency content of the observed and simulated

records match quite well, despite our use of simplified, average envelopes and spectral

scaling law.

Discussion

When compared to theoretical models of multiple forward scattering, our results

are unfavorable. The pulse shape fits marginally well whereas the distance

dependence is qualitatively different: linear instead of quadratic. As a possible

explanation of the linear trend we propose the propagation of HF energy along

curved rays, combined with the fast decay of scattering coefficient with depth

(GUSEV, 1995; GUSEV and ABUBAKIROV, 1999a,b). At short distances, the entire ray

lies in the crust, and at long distances, its middle part crosses deeper, less-scattering

layers of the earth. As a result, the pulse duration increases with distance, in

qualitative agreement with the theory; but the rate of this increase is strongly

Figure 11

Examples of the synthetic accelerograms (Syn) compared to the observed records (EW and NS

components). Left column of subplots shows observed records and synthetic result for magnitude M ¼ 7
earthquake on November 13, 1993, R ¼ 135 km; right column is the same for M5:5 earthquake on May 7,

1994, R ¼ 107 km. Only S-wave parts of records were synthesized here.

1736 A. G. Petukhin and A. A. Gusev Pure appl. geophys.,



reduced. This effect must be additionally enhanced by the specific properties of

scattering in a non-uniformly scattering medium. In this case, the contributions of

different segments of the ray to the pulse width are not simply proportional to the

length of the segment. According to the relevant formula (see GUSEV and

ABUBAKIROV, 1999a), contributions of the end parts of the ray are strongly

suppressed, as compared to those of its middle part. Thus, the properties of the

medium sampled by this middle part will contribute most significantly to the value of

the pulse width.

On the basis of inversion of pulse widths of mostly vertically propagating waves,

for the frequencies around 3 Hz, GUSEV and ABUBAKIROV (1999b) predicted the

following apparent l values for the case of shallow earthquakes in the same area:
62 km for R ¼ 50 km, 103 km for R ¼ 100 km, and 162 km for R ¼ 300 km, that is,
q is equal to 1.2, 1.0 and 0.54, respectively. These results compare quite reasonably to
our estimate of q ¼ 0:96 for the 2–4 Hz band. Very similar results with respect to the
true attenuation were obtained by HOUGH et al. (1988) and TRIFUNAC (1989). They

found that the effective whole-path Q values are strongly distance-dependent,

analogous to the scattering Q estimates of ourselves. To explain this phenomenon,

the same idea is proposed, namely, that with increasing distance rays dive deeper and

probe less attenuating layers.

ABUBAKIROV and GUSEV (1990) estimated l of S-waves for the station PET from

the ratio of amplitudes between direct wave and coda both having the same travel

time, (namely tc ¼ 25 sec), thus excluding the bias related to the unknown Qi value.
In their interpretation they used theoretical asymptotic coda obtained for the

primitive isotropic scattering model, and obtained l estimates ranging from 70–

140 km for the frequency band 1–8 Hz. However the numerical modeling of GUSEV

and ABUBAKIROV (1996) for more realistic forward-scattering cases (Figs. 5 and 6 in

their paper) revealed that the assumed theoretical coda level was about twice the

accurate one. To incorporate this adjustment, the mentioned l estimates must be

halved, giving the range l ¼ 35–70 km. To find the distance range to which these
results pertain, we note that in the simplest single-scattering coda model the coda

lapse time of tc ¼ 25 sec corresponds to a one-way travel distance of

25 � 3:5=2 ¼ 44 km. Subsequently, the range l ¼ 35–70 km from the relative coda

level can be compared to the results of Table 2 for the distance of 50 km that show

the range l ¼ 45–61 km for the same frequency band. The match is quite acceptable.
The additional energy in the early coda in the frequency range 0.3–2 Hz (see

Fig. 8, 15–30 s range) was mentioned by many researchers (e.g., RAUTIAN et al.,

1981) and generally ascribed to trapped short-period surface waves in sedimentary

wave guides. No geological features with such a signature are known around

Petropavlovsk-Kamchatsky. This point deserves more detailed study.

The general fit of HF envelope shapes in the S-wave group to the models of

forward scattering (developed for uniformly scattering medium) is quite reasonable,

in contrast with the trend for duration that is poor. To model more consistently the
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properties of observed envelopes, one should pass to more advanced, first of all

layered, models of the scattering medium.

Conclusions

A new approach to the analysis of the duration parameters and to the

determination of empirical average envelopes of small earthquakes has been

successfully tested. The results of the analysis have been presented in a form ready

for implementation into algorithms for the simulation of strong ground motion

earthquakes.

For each frequency band studied we established that the path-related duration

parameter Trms increases linearly with distance for shallow Kamchatka earthquakes
between R ¼ 30 and R ¼ 200 km, in agreement with similar trends found earlier for
other regions. The quadratic trend predicted for forward-scattered body waves in the

uniformly scattering medium can be rejected with certainty. The envelope shapes

have been estimated for all frequency bands covering the 0.5–16 Hz range. For

higher-frequency bands these shapes closely remind those of the forward-scattered

body-wave pulse. For lower-frequency bands the envelopes may be tentatively

interpreted as the combination of a similar scattered pulse and of a train of HF

surface waves.

In this study we determined average values of Trms, average signal envelopes of
the horizontal component, and parameters of dispersion for both. This material

represents a solid basis for stochastic simulation of strong-motion earthquakes on

Eastern Kamchatka, providing an advanced description of the path-related

contribution to the signal envelope from a large earthquake.

We also estimated parameters of apparent scattering attenuation for near-

horizontal seismic wave propagation in the crust of Kamchatka.
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Appendix A: Algorithm for Stochastic Simulation of Accelerograms

The proposed algorithm can be used to synthesize high-frequency strong ground

motion records (accelerograms) of relatively distant (R � 70–200 km) earthquakes

1738 A. G. Petukhin and A. A. Gusev Pure appl. geophys.,



with magnitudes M < 7–7:5. At these distances and in the frequency band 0.5–20 Hz

we can assume that the properties of strong motion will be defined by random

scattering of S waves. A synthetic record is obtained from the sum of the set of one-

octave bandpass stochastic accelerograms (for frequency bands 0.5–1, 1–2, 2–4, 4–8

and 8–16 Hz). Each bandpass stochastic accelerogram is calculated as modulated

random noise with the envelope and spectrum specific for a particular source-site

combination. In many aspects, the algorithm reproduces the approaches of RAUTIAN

(1976) and BOORE (1983).

A.1. General Outline of the Algorithm

The flow chart in Figure 12 illustrates the principal relationship between the initial,

intermediate and output quantities of the algorithm. The main input parameters are

the moment magnitude MW [or seismic moment M0; logM0 ¼ 1:5ðMW þ 10:7Þ] and
the hypocentral distance R. For these parameters, and for each frequency band, the
algorithm calculates: (1) the mean bandpass envelope and (2) the amplitude Fourier

spectrum of the accelerogram. The Fourier spectrum is used to generate a realization

of stationary random noise with the spectral shape similar to the spectral shape of the

expected earthquake record. An octave-band synthetic record is calculated by

multiplying noise and envelope amplitudes:

AsðtÞ ¼ AeðtÞ � AnðtÞ; ðA.1Þ

where AsðtÞ is the synthesized accelerogram, AeðtÞ is the rms amplitude of the
envelope, and AnðtÞ is the time history of the noise. Then, octave-band records for all
frequency bands are added to produce the complete synthetic accelerogram. Such an

approach enables us to simulate records with both nonstationary amplitude and

nonstationary carrier frequency content.

Figure 12

The flow-chart of the algorithm for the stochastic simulation of accelerograms.
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A.2. Mean Bandpass Envelope

We presume that the envelope of an accelerogram A2eðtÞ can be calculated by
convolution of the source-related envelope A2seðtÞ and the path-related envelope
A2peðtÞ:

A2eðtÞ ¼ A2seðtÞ � A2peðtÞ: ðA.2Þ

This is true for the case of point seismic source and we extend this approach for the

case of a finite size source of radiation recorded at a large distance. Sometimes the

third component may be significant, namely the site-related envelope, in particular

for non-rock sites with complicated topography, nonetheless the present version of

the algorithm ignores this possibility.

The source-related envelope AseðtÞ is assumed to have a trapezoid shape whose
duration is defined by the value of the moment magnitude. Following GUSEV and

MELNIKOVA (1990) we set the duration of this trapezoid (‘‘source duration’’, defined

by the 50% level of maximum amplitude) according to the following simple

relationships that assume self-similarity:

Ts ¼ Ls=vs ðA.3Þ

and

lg Ls ¼ 0:5MW � CL þ a: ðA.4Þ

Here Ts is the source duration, Ls is the source length, vs is the rupture velocity, CL is
an empirical ‘‘universal’’ constant and a is a constant correction term for a particular
source (related to effects of directivity, stress drop etc. usually a ¼ 0). For
Kamchatka subduction zone earthquakes we can assume CL ¼ 1:85 and

vs ¼ 3:5 km/s. A relatively high assumed value of rupture velocity reflects the fact
that the HF source radiation envelope is usually a series of pulses with a total

duration shorter than the LF duration (HARTZELL and HEATON, 1985). The source-

related envelopes are the same for all frequency bands.

The path-related envelopes, Apeðt j DfiÞ, are frequency dependent; for a particular
distance R they are calculated directly from the shapes of average envelopes of Figure
8, with the time scale compressed according to the value of the distance R.

A.3. Calculation of Fourier Spectrum

The Fourier spectrum of the accelerogram, FSA, of an earthquake with magnitude
MW recorded at a rock site at a hypocentral distance R, is calculated according to the
average empirical Fourier spectrum scaling law, FSAðf j MW ;R, rock) for Kamchatka
(PETUKHIN et al., 1999). This scaling law accounts for: (1) nonlinear magnitude

dependence (saturation of HF radiation at large magnitudes MW ), (2) fmax-
phenomenon with magnitude dependent fmax ) value (fmax decreasing with increasing
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magnitude), (3) spherical geometrical spreading and anelastic attenuation (Q-value)
during the wave propagation, (4) saturation of amplitudes near a source of a finite

size; it also incorporates the specific spectral station correction for station

Petropavlovsk (PET) whose records were simulated.

A.4. Stationary Noise Generator

A realization of stationary noise AnðtÞ with proper spectral properties is generated as
follows: (1) Using a random number generator (RNG in Fig. 12) a series of N
random numbers (N – number of counts of simulated accelerogram) is generated; this
series represents a realization of random ‘‘white’’ noise. (2) The series is Fourier

transformed (FFT). (3) The amplitude Fourier spectrum of the realization is

multiplied by the bandpassed FSA of the accelerogram. (4) Inverse Fourier

transformation yields a realization of random noise whose spectrum is proportional

to the spectrum of the simulated accelerogram.

A.5. Calculation of Synthetic Accelerogram

The next step is traditional in stochastic simulation of accelerograms: the mean

bandpass amplitude envelope, Aeðt j Dfi;MW ;RÞ, is multiplied by the calculated
realization of the random noise, An, according to equation (A.1). If the envelope
duration is small compared to the inverse value of the mean frequency of random

noise, such multiplication may distort (broaden) the spectrum of the noise. In most

practical cases, such a distortion is negligible; in any case, its absence was checked in

the procedure.

At this step the synthesized bandpass record has proper spectral and envelope

shapes, although its amplitude level is still arbitrary. To set this level properly, we

calibrate the synthesized record using the spectral power of the initial Fourier

spectrum integrated over an appropriate spectral band (block NORM in Fig. 12).

We repeat the described calculations for each one-octave frequency band (0.5–1,

1–2, 2–4, 4–8 and 8–16 Hz) and obtain the final synthetic accelerogram by summing

up all bandpass simulated accelerograms.

If the information regarding the size and location of subsources (asperities) is

available, the algorithm can be modified for cases of M > 7:5 and for near-fault sites.
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